PGM'02 accepted papers
Regular papers:
-
Optimal Time-Space Tradeoff in Probabilistic Inference
David Allen, Adnan Darwiche
-
Floating Search Methods in Learning Bayesian Networks
Rosa Blanco, Iñaki
Inza, Pedro Larrañaga
-
Learning Essential Graph Markov Models From Data
Robert Castelo, Michael
D. Perlman
-
Multicausal prior families, randomisation and essential graphs
Alireza Daneshkhah, Jim.
Q. Smith
-
Reducing propagation effort in large polytrees: An application to information
retrieval
Luis de Campos, Juan
M. Fernández, Juan Huete
-
Graphical Models to causal discovery from data
Luis de Campos, José
A. Gámez, José M. Puerta
-
Continuous Speech Recognition Using Dynamic Bayesian Networks. A
Fast Decoding Algorithm
Murat Deviren, Khalid
Daoudi
-
New Structures for Conditional Probability Tables
Juan A. Fernández.
del Pozo, Concha Bieza
-
A practical relaxation of constant-factor treewidth approximation algorithms
Mark Hopkins, Adnan Darwiche
-
Probabilistic Decision Graphs
Manfred Jaeger
-
Scaled Conjugate Gradients for Maximum Likelihood: An Empirical Comparison
with the EM Algorithm
Kristian Kersting, Niels
Landwehr
-
Logical Hidden Markov Models
Kristian Kersting, T.
Raiko, L. De Raedt
-
Causal Models, Value of Intervention, and Search for Opportunities
Tsai-Ching Lu, Marek
J. Druzdzel
-
Restricted Bayesian Network Structure Learning
Peter Lucas
-
Factorisation of probability trees and its application to inference in
Bayesian networks
Irene Martínez,
Serafín Moral, Carmelo Rodríguez, Antonio Salmerón
-
Estimating mixtures of truncated exponentials from data
Serafín Moral,
Rafael Rumí, Antonio Salmerón
-
Unsupervised Learning of Bayesian Networks Via Estimation of Distribution
Algorithms
José M. Peña,
José A. Lozano, Pedro Larrañaga
-
Inferentially efficient propagation in non-decomposable Bayesian network
with Hierarchical junction trees
Roberto Puch, Jim
Q. Smith, Concha Bielza
-
Characterization of essential graphs by means of an operation of legal
component merging
Milan Studený
-
Approximate Solutions of Complex Influence Diagrams through MCMC methods.
Miguel A. Virto, J. Martín,
D. Ríos-Insua, A. Moreno
-
Bayesian Networks in Educational Testing
Jirí Vomlel
-
An extension of lazy evaluation for influence diagrams avoiding redundant
variables in the potentials
Marta Vomlelová,
Finn V. Jensen
-
Cooperative Verification of Agent Interface
Yang Xiang, X. Chen
-
Handling of deterministic relationships in constraint-based causal discovery
Yusuf K. Yilmaz, Ethem
Alpaydin, Levent Akin, Taner Bilgiç
Tools presentations:
-
Elvira: An Environment for Creating and Using Probabilistic Graphical Models.
Elvira Consortium (Serafín
Moral et al.)
-
Genie:
Marek J. Druzdzel